The Dynamical Implications of Changes in mid-Stratospheric Ozone since 1991 Gerald E. Nedoluha, David E. Siskind, R. Michael Gomez (Naval Research Laboratory) Alyn Lambert (Jet Propulsion Laboratory) Chris Boone (University of Waterloo, Waterloo, Canada) Alan Parrish (University of Massachusetts, Amherst) Ian S. Boyd (BC Scientific Consulting) # Published O₃ trends O₃ recovery in upper stratosphere Large long-term O₃ decrease near 30km in tropics Peak observed O_3 trends (~10 hPa): ~60 ppbv/yr for HALOE ~100 ppbv/yr for MLS Some emission scenario calculations: 20 ppbv increase in surface N_2O over 20 year (IPCC A1B) => 5-7ppbv/yr decrease in O_3 Portmann et al., 2012 Annual average anomalies shown 4-times per year. MLS is shifted to match up with HALOE during overlap period. Decrease seems unrelated to solar cycle. ## The *Positive* Correlation Between O₃ and N₂O # Understanding the relationship between N₂O and O₃ ACE-FTS measurements 10S-10N 30km O_3 N_2O $NO_y = NO+NO_2+HNO_3+2*N_2O_5$ ACE sunrise and sunset measurements are both shown here N_2O anti-correlates with NO_y NO_y anti-correlates with O_3 $\rightarrow N_2O$ correlates with O_3 #### Vertical profiles of tropical O₃ and N₂O changes from linear trends # HALOE timeseries 5S-5N, 10 hPa HALOE does not provide N₂O, but it does provide NO and NO₂ O₃ and NO+NO₂ annual average anomalies shown 4-times per year. NO+NO₂ vs. O₃ shows a strong anti-correlation over long timescales. ### Vertical profiles of tropical O₃ and NOx changes from linear trends NO+NO₂ (Sunrise and Sunset) # How does Age-of-Air change? Simulating changes in tropical upwelling. # Need to compare model with fast upwelling (young) and slow upwelling (old) Use simple 2D model (Bacmeister et al., 1998) - 1) Baseline model (dashed) - 2) Younger model (Added a 0.3K/day heat source at 18km at equator, solid). #### Older air has lower N_2O abundance at a given pressure. Requires a large change (>9 months) in Age-of-Air to perturb N₂O to match 2004-2013 MLS change # What about outside the tropics? N₂O and O₃ trends from MLS since 2004 suggest: - •Older air at 10 hPa at equator - Younger air in Southern Hemisphere between 20 hPa and 10 hPa No such signature of younger air in HALOE O_3 (1991-2005) # MLS together with Ground-Based Microwave O₃ 2004-2013 $\rm MLS~O_3$ MOPI (Microwave $\rm O_3$ Profiling Instruments) at NDACC Lauder and Mauna Loa sites $\rm MLS~N_2O$ N_2O and O_3 , especially in the tropics, show a strong correlation at ~10 hPa. ## Now add July 2013-present $MLS O_3$ MOPI (Microwave O_3 Profiling Instruments) at NDACC Lauder and Mauna Loa sites $MLS N_2O$ N_2O and O_3 , especially in the tropics, show a strong correlation at ~10 hPa. - •After the recent increase, tropical N₂O and O₃ values are now similar to those measured when Aura was launched - •Is this just a 1-year anomaly, or the sign of a reversal in a 20-year trend? # **Summary** - •Previously reported tropical ozone decreases at 10 hPa shown to extend over 20 years (1991-2013). - •Decrease in O_3 coincides with large decrease in N_2O (MLS) <u>and</u> large increase in NOx (HALOE). NOx is anticorrelated with N_2O . - Likeliest explanation is $\frac{dynamical}{D}$. Slower upwelling leads to Decreased N₂O Increased NOx Decreased O₃ - Estimated Age-of-Air change in the tropics near ~10 hPa required to change N₂O by 20% is large → > 9 months. HALOE data implies even greater changes back to 1991! - Other issues: - 1) MLS SH mid-lat N₂O and O₃ show opposite behavior from tropics - 2) Tropical mid-stratospheric N_2O and O_3 show a large increase since mid-2013, and are now similar to when Aura was launched in 2004